Copied to
clipboard

G = C42.69D4order 128 = 27

51st non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.69D4, C42.150C23, (C4×D4).4C4, (C4×Q8).4C4, C22.5C4≀C2, C4⋊D4.11C4, C42.91(C2×C4), C22⋊Q8.11C4, (C22×C4).666D4, C8⋊C4.86C22, C42.6C436C2, C42.2C229C2, (C2×C42).194C22, C42.C2.97C22, C23.106(C22⋊C4), C42.C2210C2, C4.4D4.116C22, C2.32(C42⋊C22), C23.36C23.11C2, C2.12(M4(2).8C22), C2.37(C2×C4≀C2), C4⋊C4.28(C2×C4), (C2×C8⋊C4)⋊16C2, (C2×D4).23(C2×C4), (C2×Q8).23(C2×C4), (C2×C4).1178(C2×D4), (C2×C4).144(C22×C4), (C22×C4).216(C2×C4), (C2×C4).322(C22⋊C4), C22.208(C2×C22⋊C4), SmallGroup(128,264)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.69D4
C1C2C22C2×C4C42C2×C42C23.36C23 — C42.69D4
C1C22C2×C4 — C42.69D4
C1C22C2×C42 — C42.69D4
C1C22C22C42 — C42.69D4

Generators and relations for C42.69D4
 G = < a,b,c,d | a4=b4=1, c4=a2, d2=b, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b, bd=db, dcd-1=a2bc3 >

Subgroups: 212 in 109 conjugacy classes, 44 normal (34 characteristic)
C1, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C8⋊C4, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C22×C8, C42.C22, C42.2C22, C2×C8⋊C4, C42.6C4, C23.36C23, C42.69D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4≀C2, C2×C22⋊C4, M4(2).8C22, C2×C4≀C2, C42⋊C22, C42.69D4

Smallest permutation representation of C42.69D4
On 64 points
Generators in S64
(1 44 5 48)(2 29 6 25)(3 46 7 42)(4 31 8 27)(9 23 13 19)(10 37 14 33)(11 17 15 21)(12 39 16 35)(18 53 22 49)(20 55 24 51)(26 63 30 59)(28 57 32 61)(34 56 38 52)(36 50 40 54)(41 62 45 58)(43 64 47 60)
(1 22 61 35)(2 19 62 40)(3 24 63 37)(4 21 64 34)(5 18 57 39)(6 23 58 36)(7 20 59 33)(8 17 60 38)(9 45 54 29)(10 42 55 26)(11 47 56 31)(12 44 49 28)(13 41 50 25)(14 46 51 30)(15 43 52 27)(16 48 53 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 17 22 60 61 38 35 8)(2 63 19 37 62 3 40 24)(4 5 21 18 64 57 34 39)(6 59 23 33 58 7 36 20)(9 51 45 30 54 14 29 46)(10 25 42 13 55 41 26 50)(11 16 47 48 56 53 31 32)(12 43 44 52 49 27 28 15)

G:=sub<Sym(64)| (1,44,5,48)(2,29,6,25)(3,46,7,42)(4,31,8,27)(9,23,13,19)(10,37,14,33)(11,17,15,21)(12,39,16,35)(18,53,22,49)(20,55,24,51)(26,63,30,59)(28,57,32,61)(34,56,38,52)(36,50,40,54)(41,62,45,58)(43,64,47,60), (1,22,61,35)(2,19,62,40)(3,24,63,37)(4,21,64,34)(5,18,57,39)(6,23,58,36)(7,20,59,33)(8,17,60,38)(9,45,54,29)(10,42,55,26)(11,47,56,31)(12,44,49,28)(13,41,50,25)(14,46,51,30)(15,43,52,27)(16,48,53,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,17,22,60,61,38,35,8)(2,63,19,37,62,3,40,24)(4,5,21,18,64,57,34,39)(6,59,23,33,58,7,36,20)(9,51,45,30,54,14,29,46)(10,25,42,13,55,41,26,50)(11,16,47,48,56,53,31,32)(12,43,44,52,49,27,28,15)>;

G:=Group( (1,44,5,48)(2,29,6,25)(3,46,7,42)(4,31,8,27)(9,23,13,19)(10,37,14,33)(11,17,15,21)(12,39,16,35)(18,53,22,49)(20,55,24,51)(26,63,30,59)(28,57,32,61)(34,56,38,52)(36,50,40,54)(41,62,45,58)(43,64,47,60), (1,22,61,35)(2,19,62,40)(3,24,63,37)(4,21,64,34)(5,18,57,39)(6,23,58,36)(7,20,59,33)(8,17,60,38)(9,45,54,29)(10,42,55,26)(11,47,56,31)(12,44,49,28)(13,41,50,25)(14,46,51,30)(15,43,52,27)(16,48,53,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,17,22,60,61,38,35,8)(2,63,19,37,62,3,40,24)(4,5,21,18,64,57,34,39)(6,59,23,33,58,7,36,20)(9,51,45,30,54,14,29,46)(10,25,42,13,55,41,26,50)(11,16,47,48,56,53,31,32)(12,43,44,52,49,27,28,15) );

G=PermutationGroup([[(1,44,5,48),(2,29,6,25),(3,46,7,42),(4,31,8,27),(9,23,13,19),(10,37,14,33),(11,17,15,21),(12,39,16,35),(18,53,22,49),(20,55,24,51),(26,63,30,59),(28,57,32,61),(34,56,38,52),(36,50,40,54),(41,62,45,58),(43,64,47,60)], [(1,22,61,35),(2,19,62,40),(3,24,63,37),(4,21,64,34),(5,18,57,39),(6,23,58,36),(7,20,59,33),(8,17,60,38),(9,45,54,29),(10,42,55,26),(11,47,56,31),(12,44,49,28),(13,41,50,25),(14,46,51,30),(15,43,52,27),(16,48,53,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,17,22,60,61,38,35,8),(2,63,19,37,62,3,40,24),(4,5,21,18,64,57,34,39),(6,59,23,33,58,7,36,20),(9,51,45,30,54,14,29,46),(10,25,42,13,55,41,26,50),(11,16,47,48,56,53,31,32),(12,43,44,52,49,27,28,15)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F4A···4H4I4J4K4L4M8A···8H8I8J8K8L
order12222224···4444448···88888
size11112282···2448884···48888

32 irreducible representations

dim111111111122244
type++++++++
imageC1C2C2C2C2C2C4C4C4C4D4D4C4≀C2M4(2).8C22C42⋊C22
kernelC42.69D4C42.C22C42.2C22C2×C8⋊C4C42.6C4C23.36C23C4×D4C4×Q8C4⋊D4C22⋊Q8C42C22×C4C22C2C2
# reps122111222222822

Matrix representation of C42.69D4 in GL6(𝔽17)

1300000
0130000
0040150
0000161
00160130
00161130
,
420000
1130000
004000
000400
000040
000004
,
1230000
1050000
000298
000208
000800
0080015
,
1230000
1000000
000298
000090
000800
009820

G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,16,16,0,0,0,0,0,1,0,0,15,16,13,13,0,0,0,1,0,0],[4,1,0,0,0,0,2,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[12,10,0,0,0,0,3,5,0,0,0,0,0,0,0,0,0,8,0,0,2,2,8,0,0,0,9,0,0,0,0,0,8,8,0,15],[12,10,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,9,0,0,2,0,8,8,0,0,9,9,0,2,0,0,8,0,0,0] >;

C42.69D4 in GAP, Magma, Sage, TeX

C_4^2._{69}D_4
% in TeX

G:=Group("C4^2.69D4");
// GroupNames label

G:=SmallGroup(128,264);
// by ID

G=gap.SmallGroup(128,264);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,758,520,1123,1018,248,1971,102]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2,d^2=b,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=a^2*b*c^3>;
// generators/relations

׿
×
𝔽